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1
METHOD AND APPARATUS FOR
EXTENDING LOCAL AREA NETWORKS
BETWEEN CLOUDS AND MIGRATING
VIRTUAL MACHINES USING STATIC
NETWORK ADDRESSES

TECHNICAL FIELD

The present patent application is directed to virtual-ma-
chine-based computing and cloud computing and, in particu-
lar, to methods and systems for moving virtual machines and
virtual applications from a first cloud to a second cloud with-
out extensive reconfiguration of the virtual machines and
virtual applications by using layer-2 stretching through a
secure VPN tunnel.

BACKGROUND

The development and evolution of modern computing has,
in many ways, been facilitated by the power of logical
abstraction. Early computers were manually programmed by
slow and tedious input of machine instructions into the com-
puters’ memories. Over time, assembly-language programs
and assemblers were developed in order to provide a level of
abstraction, namely assembly-language programs, above the
machine-instruction hardware-interface level, to allow pro-
grammers to more rapidly and accurately develop programs.
Assembly-language-based operations are more easily
encoded by human programmers than machine-instruction-
based operations, and assemblers provided additional fea-
tures, including assembly directives, routine calls, and a logi-
cal framework for program development. The development of
operating systems provided yet another type of abstraction
that provided programmers with logical, easy-to-understand
system-call interfaces to computer-hardware functionality.
As operating systems developed, additional internal levels of
abstraction were created within operating systems, including
virtual memory, implemented by operating-system paging of
memory pages between electronic memory and mass-storage
devices, which provided easy-to-use, linear memory-address
spaces much larger than could be provided by the hardware
memory of computer systems. Additional levels of abstrac-
tions were created in the programming-language domain,
with compilers developed for a wide variety of compiled
languages that greatly advanced the ease of programming and
the number and capabilities of programming tools with
respect those provided by assemblers and assembly lan-
guages. Higher-level scripting languages and special-purpose
interpreted languages provided even higher levels of abstrac-
tion and greater ease of application development in particular
areas. Similarly, block-based and sector-based interfaces to
mass-storage devices have been abstracted through many
levels of abstraction to modern database management sys-
tems, which provide for high-available and fault-tolerant stor-
age of structured data that can be analyzed, interpreted, and
manipulated through powerful high-level query languages.

In many ways, a modern computer system can be thought
of'as many different levels of abstractions along many difter-
ent, often interdependent, dimensions. More recently, pow-
erful new levels of abstraction have been developed with
respect to virtual machines, which provide virtual execution
environments for application programs and operating sys-
tems. Virtual-machine technology essentially abstracts the
hardware resources and interfaces of a computer system on
behalf of one or multiple virtual machines, each comprising
one or more application programs and an operating system.
Even more recently, the emergence of cloud computing ser-
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2

vices can provide abstract interfaces to enormous collections
of geographically dispersed data centers, allowing computa-
tional service providers to develop and deploy complex Inter-
net-based services that execute on tens or hundreds of physi-
cal servers through abstract cloud-computing interfaces.

Within virtual servers as well as physical servers, virtual
machines and virtual applications can be moved among mul-
tiple virtual or physical processors in order to facilitate load
balancing and to collocate compatible virtual machines and
virtual applications with respect to virtual and physical pro-
cessors. Similarly, virtual machines and virtual applications
can be moved among the virtual servers within a virtual data
center as well as among physical servers within the underly-
ing physical hardware within which virtual data centers are
constructed. Migration of virtual machines and virtual appli-
cations within virtual data centers can also be used for load
balancing, fault tolerance and high availability, and for many
other purposes. Designers, developers, vendors, and users of
virtualization technology continue to seek new facilities
within emerging layers of virtualization for movement of
virtual machines and virtual applications in order to achieve
many different types of goals, from load balancing, fault
tolerance, and high availability to minimization of costs, effi-
cient geographic distribution, and other such goals.

SUMMARY

The current document discloses methods and systems for
extending an internal network within a first cloud-computing
facility to a second cloud-computing facility and deploying a
virtual machine or virtual application previously running on a
first cloud-computing facility within the context of the
extended internal network in the second cloud-computing
facility. The currently disclosed methods and systems which
provide internal-network extension and redeployment of vir-
tual machines and virtual applications, referred to as “stretch
deploy,” allow a virtual machine or virtual application for-
merly executing on a first cloud-computing facility to resume
execution on a second cloud-computing facility, using the
computational and storage facilities of the second cloud-
computing facility but depending on network support from
the first cloud-computing facility, without changing IP and
local network addresses and the network connectivity, based
on those addresses, between the virtual machines and virtual
applications and other local and remote computational enti-
ties with which the virtual machines and virtual applications
communicate.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 provides a general architectural diagram for various
types of computers.

FIG. 2 illustrates an Internet-connected distributed com-
puter system.

FIG. 3 illustrates cloud computing.

FIG. 4 illustrates generalized hardware and software com-
ponents of a general-purpose computer system, such as a
general-purpose computer system having an architecture
similar to that shown in FIG. 1.

FIG. 5 illustrates one type of virtual machine and virtual-
machine execution environment.

FIG. 6 illustrates an OVF package.

FIG. 7 illustrates virtual data centers provided as an
abstraction of underlying physical-data-center hardware
components.

FIG. 8 illustrates virtual-machine components of a virtual-
data-center management server and physical servers of a
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physical data center above which a virtual-data-center inter-
face is provided by the virtual-data-center management
server.

FIG. 9 illustrates a cloud-director level of abstraction.

FIG. 10 illustrates virtual-cloud-connector nodes (“VCC
nodes”) and a VCC server, components of a distributed sys-
tem that provides multi-cloud aggregation and that includes a
cloud-connector server and cloud-connector nodes that coop-
erate to provide services that are distributed across multiple
clouds.

FIG. 11 illustrates the VCC server and VCC nodes in a
slightly different fashion than the VCC server and VCC nodes
are illustrated in FIG. 10.

FIG. 12 illustrates one implementation of a VCC node.

FIG. 13 illustrates electronic communications between a
client and server computer.

FIG. 14 illustrates another model for network communica-
tions used to interconnect consumers of services with service-
providing applications running within server computers.

FIG. 15 illustrates a virtual application.

FIG. 16 illustrates virtualization of networking facilities
within a physical data center.

FIGS. 17A-B illustrate one approach to moving a virtual
machine, executing within a first cloud-computing facility, to
a second cloud-computing facility.

FIGS. 18A-C illustrate the stretch-deploy operation dis-
closed in the current document.

FIGS. 19A-] illustrate the stretch-deploy operation as
implemented in one type of virtualization layer.

FIGS. 20A-E provide control-flow diagrams that describe
one implementation of a stretch-deploy operation.

DETAILED DESCRIPTION

As discussed above, modern computing can be considered
to be a collection of many different levels of abstraction above
the physical computing-hardware level that includes physical
computer systems, data-storage systems and devices, and
communications networks. The present application is related
to a multi-cloud-aggregation level of abstraction that pro-
vides homogenous-cloud and heterogeneous-cloud distrib-
uted management services, each cloud generally an abstrac-
tion of a large number of virtual resource pools comprising
processing, storage, and network resources, each of which, in
turn, can be considered to be a collection of abstractions
above underlying physical hardware devices. The current
document is directed to providing a straightforward and effi-
cient method for the migration of virtual machines and virtual
applications among virtual data centers within different
cloud-computing facilities at the cloud-computing and vir-
tual-data-center levels of abstraction.

Computer Architecture, Virtualization, Electronic Com-
munications, and Virtual Networks

The term “abstraction” is not, in any way, intended to mean
or suggest an abstract idea or concept. Computational
abstractions are tangible, physical interfaces that are imple-
mented, ultimately, using physical computer hardware, data-
storage devices, and communications systems. Instead, the
term “abstraction” refers, in the current discussion, to a logi-
cal level of functionality encapsulated within one or more
concrete, tangible, physically-implemented computer sys-
tems with defined interfaces through which electronically-
encoded data is exchanged, process execution launched, and
electronic services are provided. Interfaces may include
graphical and textual data displayed on physical display
devices as well as computer programs and routines that con-
trol physical computer processors to carry out various tasks
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and operations and that are invoked through electronically
implemented application programming interfaces (“APIs”)
and other electronically implemented interfaces. There is a
tendency among those unfamiliar with modern technology
and science to misinterpret the terms “abstract” and “abstrac-
tion,” when used to describe certain aspects of modern com-
puting. For example, one frequently encounters assertions
that, because a computational system is described in terms of
abstractions, functional layers, and interfaces, the computa-
tional system is somehow different from a physical machine
or device. Such allegations are unfounded. One only needs to
disconnect a computer system or group of computer systems
from their respective power supplies to appreciate the physi-
cal, machine nature of complex computer technologies. One
also frequently encounters statements that characterize a
computational technology as being “only software,” and thus
not a machine or device. Software is essentially a sequence of
encoded symbols, such as a printout of a computer program or
digitally encoded computer instructions sequentially stored
in a file on an optical disk or within an electromechanical
mass-storage device. Software alone can do nothing. It is only
when encoded computer instructions are loaded into an elec-
tronic memory within a computer system and executed on a
physical processor that so-called “software implemented”
functionality is provided. The digitally encoded computer
instructions are an essential control component of processor-
controlled machines and devices, no less essential than a
cam-shaft control system in an internal-combustion engine.
Multi-cloud aggregations, cloud-computing services, virtual-
machine containers and virtual machines, communications
interfaces, and many of the other topics discussed below are
tangible, physical components of physical, electro-optical-
mechanical computer systems.

FIG. 1 provides a general architectural diagram for various
types of computers. The computer system contains one or
multiple central processing units (“CPUs”) 102-105, one or
more electronic memories 108 interconnected with the CPUs
by a CPU/memory-subsystem bus 110 or multiple busses, a
first bridge 112 that interconnects the CPU/memory-sub-
system bus 110 with additional busses 114 and 116, or other
types of high-speed interconnection media, including mul-
tiple, high-speed serial interconnects. These busses or serial
interconnections, in turn, connect the CPUs and memory with
specialized processors, such as a graphics processor 118, and
with one or more additional bridges 120, which are intercon-
nected with high-speed serial links or with multiple control-
lers 122-127, such as controller 127, that provide access to
various different types of mass-storage devices 128, elec-
tronic displays, input devices, and other such components,
subcomponents, and computational resources. It should be
noted that computer-readable data-storage devices include
optical and electromagnetic disks, electronic memories, and
other physical data-storage devices. Those familiar with
modern science and technology appreciate that electromag-
netic radiation and propagating signals do not store data for
subsequent retrieval, and can transiently “store” only a byte or
less of information per mile, far less information than needed
to encode even the simplest of routines.

Of course, there are many different types of computer-
system architectures that differ from one another in the num-
ber of different memories, including different types of hier-
archical cache memories, the number of processors and the
connectivity of the processors with other system components,
the number of internal communications busses and serial
links, and in many other ways. However, computer systems
generally execute stored programs by fetching instructions
from memory and executing the instructions in one or more
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processors. Computer systems include general -purpose com-
puter systems, such as personal computers (“PCs”), various
types of servers and workstations, and higher-end mainframe
computers, but may also include a plethora of various types of
special-purpose computing devices, including data-storage
systems, communications routers, network nodes, tablet
computers, and mobile telephones.

FIG. 2 illustrates an Internet-connected distributed com-
puter system. As communications and networking technolo-
gies have evolved in capability and accessibility, and as the
computational bandwidths, data-storage capacities, and other
capabilities and capacities of various types of computer sys-
tems have steadily and rapidly increased, much of modern
computing now generally involves large distributed systems
and computers interconnected by local networks, wide-area
networks, wireless communications, and the Internet. FIG. 2
shows a typical distributed system in which a large number of
PCs 202-205, a high-end distributed mainframe system 210
with a large data-storage system 212, and a large computer
center 214 with large numbers of rack-mounted servers or
blade servers all interconnected through various communica-
tions and networking systems that together comprise the
Internet 216. Such distributed computing systems provide
diverse arrays of functionalities. For example, a PC user
sitting in a home office may access hundreds of millions of
different web sites provided by hundreds of thousands of
different web servers throughout the world and may access
high-computational-bandwidth computing services from
remote computer facilities for running complex computa-
tional tasks.

Until recently, computational services were generally pro-
vided by computer systems and data centers purchased, con-
figured, managed, and maintained by service-provider orga-
nizations. For example, an e-commerce retailer generally
purchased, configured, managed, and maintained a data cen-
ter including numerous web servers, back-end computer sys-
tems, and data-storage systems for serving web pages to
remote customers, receiving orders through the web-page
interface, processing the orders, tracking completed orders,
and other myriad different tasks associated with an e-com-
merce enterprise.

FIG. 3 illustrates cloud computing. In the recently devel-
oped cloud-computing paradigm, computing cycles and data-
storage facilities are provided to organizations and individu-
als by cloud-computing providers. In addition, larger
organizations may elect to establish private cloud-computing
facilities in addition to, or instead of subscribing to comput-
ing services provided by public cloud-computing service pro-
viders. In FIG. 3, a system administrator for an organization,
using a PC 302, accesses the organization’s private cloud 304
through a local network 306 and private-cloud interface 308
and also accesses, through the Internet 310, a public cloud
312 through a public-cloud services interface 314. The
administrator can, in either the case of the private cloud 304 or
public cloud 312, configure virtual computer systems and
even entire virtual data centers and launch execution of appli-
cation programs on the virtual computer systems and virtual
data centers in order to carry out any of many different types
of computational tasks. As one example, a small organization
may configure and run a virtual data center within a public
cloud that executes web servers to provide an e-commerce
interface through the public cloud to remote customers of the
organization, such as a user viewing the organization’s
e-commerce web pages on a remote user system 316.

Cloud-computing facilities are intended to provide com-
putational bandwidth and data-storage services much as util-
ity companies provide electrical power and water to consum-
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ers. Cloud computing provides enormous advantages to small
organizations without the resources to purchase, manage, and
maintain in-house data centers. Such organizations can
dynamically add and delete virtual computer systems from
their virtual data centers within public clouds in order to track
computational-bandwidth and data-storage needs, rather than
purchasing sufficient computer systems within a physical
data center to handle peak computational-bandwidth and
data-storage demands. Moreover, small organizations can
completely avoid the overhead of maintaining and managing
physical computer systems, including hiring and periodically
retraining information-technology specialists and continu-
ously paying for operating-system and database-manage-
ment-system upgrades. Furthermore, cloud-computing inter-
faces allow for easy and straightforward configuration of
virtual computing facilities, flexibility in the types of appli-
cations and operating systems that can be configured, and
other functionalities that are useful even for owners and
administrators of private cloud-computing facilities used by a
single organization.

FIG. 4 illustrates generalized hardware and software com-
ponents of a general-purpose computer system, such as a
general-purpose computer system having an architecture
similar to that shown in FIG. 1. The computer system 400 is
often considered to include three fundamental layers: (1) a
hardware layer or level 402; (2) an operating-system layer or
level 404; and (3) an application-program layer or level 406.
The hardware layer 402 includes one or more processors 408,
system memory 410, various different types of input-output
(“I/0”) devices 410 and 412, and mass-storage devices 414.
Of course, the hardware level also includes many other com-
ponents, including power supplies, internal communications
links and busses, specialized integrated circuits, many difter-
ent types of processor-controlled or microprocessor-con-
trolled peripheral devices and controllers, and many other
components. The operating system 404 interfaces to the hard-
ware level 402 through a low-level operating system and
hardware interface 416 generally comprising a set of non-
privileged computer instructions 418, a set of privileged com-
puter instructions 420, a set of non-privileged registers and
memory addresses 422, and a set of privileged registers and
memory addresses 424. In general, the operating system
exposes non-privileged instructions, non-privileged registers,
and non-privileged memory addresses 426 and a system-call
interface 428 as an operating-system interface 430 to appli-
cation programs 432-436 that execute within an execution
environment provided to the application programs by the
operating system. The operating system, alone, accesses the
privileged instructions, privileged registers, and privileged
memory addresses. By reserving access to privileged instruc-
tions, privileged registers, and privileged memory addresses,
the operating system can ensure that application programs
and other higher-level computational entities cannot interfere
with one another’s execution and cannot change the overall
state of the computer system in ways that could deleteriously
impact system operation. The operating system includes
many internal components and modules, including a sched-
uler 442, memory management 444, a file system 446, device
drivers 448, and many other components and modules. To a
certain degree, modern operating systems provide numerous
levels of abstraction above the hardware level, including vir-
tual memory, which provides to each application program and
other computational entities a separate, large, linear memory-
address space that is mapped by the operating system to
various electronic memories and mass-storage devices. The
scheduler orchestrates interleaved execution of various dif-
ferent application programs and higher-level computational
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entities, providing to each application program a virtual,
stand-alone system devoted entirely to the application pro-
gram. From the application program’s standpoint, the appli-
cation program executes continuously without concern for
the need to share processor resources and other system
resources with other application programs and higher-level
computational entities. The device drivers abstract details of
hardware-component operation, allowing application pro-
grams to employ the system-call interface for transmitting
and receiving data to and from communications networks,
mass-storage devices, and other I/O devices and subsystems.
The file system 436 facilitates abstraction of mass-storage-
device and memory resources as a high-level, easy-to-access,
file-system interface. Thus, the development and evolution of
the operating system has resulted in the generation of a type of
multi-faceted virtual execution environment for application
programs and other higher-level computational entities.

While the execution environments provided by operating
systems have proved to be an enormously successful level of
abstraction within computer systems, the operating-system-
provided level of abstraction is nonetheless associated with
difficulties and challenges for developers and users of appli-
cation programs and other higher-level computational enti-
ties. One difficulty arises from the fact that there are many
different operating systems that run within various different
types of computer hardware. In many cases, popular applica-
tion programs and computational systems are developed to
run on only a subset of the available operating systems, and
can therefore be executed within only a subset of the various
different types of computer systems on which the operating
systems are designed to run. Often, even when an application
program or other computational system is ported to additional
operating systems, the application program or other compu-
tational system can nonetheless run more efficiently on the
operating systems for which the application program or other
computational system was originally targeted. Another diffi-
culty arises from the increasingly distributed nature of com-
puter systems. Although distributed operating systems are the
subject of considerable research and development efforts,
many of the popular operating systems are designed primarily
for execution on a single computer system. In many cases, it
is difficult to move application programs, in real time,
between the different computer systems of a distributed com-
puter system for high-availability, fault-tolerance, and load-
balancing purposes. The problems are even greater in hetero-
geneous distributed computer systems which include
different types of hardware and devices running different
types of operating systems. Operating systems continue to
evolve, as a result of which certain older application programs
and other computational entities may be incompatible with
more recent versions of operating systems for which they are
targeted, creating compatibility issues that are particularly
difficult to manage in large distributed systems.

For all of these reasons, a higher level of abstraction,
referred to as the “virtual machine,” has been developed and
evolved to further abstract computer hardware in order to
address many difficulties and challenges associated with tra-
ditional computing systems, including the compatibility
issues discussed above. FIG. 5 illustrates one type of virtual
machine and virtual-machine execution environment. FIG. 5
uses the same illustration conventions as used in FIG. 4. In
particular, the computer system 500 in FIG. 5 includes the
same hardware layer 502 as the hardware layer 402 shown in
FIG. 4. However, rather than providing an operating system
layer directly above the hardware layer, as in FIG. 4, the
virtualized computing environment illustrated in FIG. 5 fea-
tures a virtualization layer 504 that interfaces through a vir-
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tualization-layer/hardware-layer interface 506, equivalent to
interface 416 in FIG. 4, to the hardware. The virtualization
layer provides a hardware-like interface 508 to a number of
virtual machines, such as virtual machine 510, executing
above the virtualization layer in a virtual-machine layer 512.
Each virtual machine includes one or more application pro-
grams or other higher-level computational entities packaged
together with an operating system, such as application 514
and operating system 516 packaged together within virtual
machine 510. Each virtual machine is thus equivalent to the
operating-system layer 404 and application-program layer
406 in the general-purpose computer system shown in FIG. 4.
Each operating system within a virtual machine interfaces to
the virtualization-layer interface 508 rather than to the actual
hardware interface 506. The virtualization layer partitions
hardware resources into abstract virtual-hardware layers to
which each operating system within a virtual machine inter-
faces. The operating systems within the virtual machines, in
general, are unaware of the virtualization layer and operate as
if they were directly accessing a true hardware interface. The
virtualization layer ensures that each of the virtual machines
currently executing within the virtual environment receive a
fair allocation of underlying hardware resources and that all
virtual machines receive sufficient resources to progress in
execution. The virtualization-layer interface 508 may differ
for different operating systems. For example, the virtualiza-
tion layer is generally able to provide virtual hardware inter-
faces for a variety of different types of computer hardware.
This allows, as one example, a virtual machine that includes
an operating system designed for a particular computer archi-
tecture to run on hardware of a different architecture. The
number of virtual machines need not be equal to the number
of physical processors or even a multiple of the number of
processors. The virtualization layer includes a virtual-ma-
chine-monitor module 518 that virtualizes physical proces-
sors in the hardware layer to create virtual processors on
which each of the virtual machines executes. For execution
efficiency, the virtualization layer attempts to allow virtual
machines to directly execute non-privileged instructions and
to directly access non-privileged registers and memory. How-
ever, when the operating system within a virtual machine
accesses virtual privileged instructions, virtual privileged
registers, and virtual privileged memory through the virtual-
ization-layer interface 508, the accesses may result in execu-
tion of virtualization-layer code to simulate or emulate the
privileged resources. The virtualization layer additionally
includes a kernel module 520 that manages memory, commu-
nications, and data-storage machine resources on behalf of
executing virtual machines. The kernel, for example, may
maintain shadow page tables on each virtual machine so that
hardware-level virtual-memory facilities can be used to pro-
cess memory accesses. The kernel may additionally include
routines that implement virtual communications and data-
storage devices as well as device drivers that directly control
the operation of underlying hardware communications and
data-storage devices. Similarly, the kernel virtualizes various
other types of /O devices, including keyboards, optical-disk
drives, and other such devices. The virtualization layer essen-
tially schedules execution of virtual machines much like an
operating system schedules execution of application pro-
grams, so that the virtual machines each execute within a
complete and fully functional virtual hardware layer.

A virtual machine or virtual application, described below,
is encapsulated within a data package for transmission, dis-
tribution, and loading into a virtual-execution environment.
One public standard for virtual-machine encapsulation is
referred to as the “open virtualization format” (“OVF”). The
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OVF standard specifies a format for digitally encoding a
virtual machine within one or more data files. FIG. 6 illus-
trates an OVF package. An OVF package 602 includes an
OVF descriptor 604, an OVF manifest 606, an OVF certificate
608, one or more disk-image files 610-611, and one or more
resource files 612-614. The OVF package can be encoded and
stored as a single file or as a set of files. The OVF descriptor
604 is an XML document 620 that includes a hierarchical set
of elements, each demarcated by a beginning tag and an
ending tag. The outermost, or highest-level, element is the
envelope element, demarcated by tags 622 and 623. The
next-level element includes a reference element 626 that
includes references to all files that are part of the OVF pack-
age, a disk section 628 that contains meta information about
all of the virtual disks included in the OVF package, a net-
works section 630 that includes meta information about all of
the logical networks included in the OVF package, and a
collection of virtual-machine configurations 632 which fur-
ther includes hardware descriptions of each virtual machine
634. There are many additional hierarchical levels and ele-
ments within a typical OVF descriptor. The OVF descriptor is
thus a self-describing, XML file that describes the contents of
an OVF package. The OVF manifest 606 is a list of crypto-
graphic-hash-function-generated digests 636 of the entire
OVF package and of the various components of the OVF
package. The OVF certificate 608 is an authentication certifi-
cate 640 that includes a digest of the manifest and that is
cryptographically signed. Disk image files, such as disk
image file 610, are digital encodings of the contents of virtual
disks and resource files 612 are digitally encoded content,
such as operating-system images. A virtual machine or a
collection of virtual machines encapsulated together within a
virtual application can thus be digitally encoded as one or
more files within an OVF package that can be transmitted,
distributed, and loaded using well-known tools for transmit-
ting, distributing, and loading files. A virtual appliance is a
software service that is delivered as a complete software stack
installed within one or more virtual machines that is encoded
within an OVF package.

The advent of virtual machines and virtual environments
has alleviated many of the difficulties and challenges associ-
ated with traditional general-purpose computing. Machine
and operating-system dependencies can be significantly
reduced or entirely eliminated by packaging applications and
operating systems together as virtual machines and virtual
appliances that execute within virtual environments provided
by virtualization layers running on many different types of
computer hardware. A next level of abstraction, referred to as
virtual data centers or virtual infrastructure, provide a data-
center interface to virtual data centers computationally con-
structed within physical data centers. FIG. 7 illustrates virtual
data centers provided as an abstraction of underlying physi-
cal-data-center hardware components. In FIG. 7, a physical
data center 702 is shown below a virtual-interface plane 704.
The physical data center consists of a virtual-data-center
management server 706 and any of various different comput-
ers, such as PCs 708, on which a virtual-data-center manage-
ment interface may be displayed to system administrators and
other users. The physical data center additionally includes
generally large numbers of server computers, such as server
computer 710, that are coupled together by local area net-
works, such as local area network 712 that directly intercon-
nects server computer 710 and 714-720 and a mass-storage
array 722. The physical data center shown in FIG. 7 includes
three local area networks 712, 724, and 726 that each directly
interconnects a bank of eight servers and a mass-storage
array. The individual server computers, such as server com-
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puter 710, each includes a virtualization layer and runs mul-
tiple virtual machines. Different physical data centers may
include many different types of computers, networks, data-
storage systems and devices connected according to many
different types of connection topologies. The virtual-data-
center abstraction layer 704, a logical abstraction layer shown
by a plane in FIG. 7, abstracts the physical data center to a
virtual data center comprising one or more resource pools,
such as resource pools 730-732, one or more virtual data
stores, such as virtual data stores 734-736, and one or more
virtual networks. In certain implementations, the resource
pools abstract banks of physical servers directly intercon-
nected by a local area network.

The virtual-data-center management interface allows pro-
visioning and launching of virtual machines with respect to
resource pools, virtual data stores, and virtual networks, so
that virtual-data-center administrators need not be concerned
with the identities of physical-data-center components used
to execute particular virtual machines. Furthermore, the vir-
tual-data-center management server includes functionality to
migrate running virtual machines from one physical server to
another in order to optimally or near optimally manage
resource allocation, provide fault tolerance, and high avail-
ability by migrating virtual machines to most effectively uti-
lize underlying physical hardware resources, to replace vir-
tual machines disabled by physical hardware problems and
failures, and to ensure that multiple virtual machines support-
ing a high-availability virtual appliance are executing on mul-
tiple physical computer systems so that the services provided
by the virtual appliance are continuously accessible, even
when one of the multiple virtual appliances becomes compute
bound, data-access bound, suspends execution, or fails. Thus,
the virtual data center layer of abstraction provides a virtual-
data-center abstraction of physical data centers to simplify
provisioning, launching, and maintenance of virtual
machines and virtual appliances as well as to provide high-
level, distributed functionalities that involve pooling the
resources of individual physical servers and migrating virtual
machines among physical servers to achieve load balancing,
fault tolerance, and high availability.

FIG. 8 illustrates virtual-machine components of a virtual-
data-center management server and physical servers of a
physical data center above which a virtual-data-center inter-
face is provided by the virtual-data-center management
server. The virtual-data-center management server 802 and a
virtual-data-center database 804 comprise the physical com-
ponents of the management component of the virtual data
center. The virtual-data-center management server 802
includes a hardware layer 806 and virtualization layer 808,
and runs a virtual-data-center management-server virtual
machine 810 above the virtualization layer. Although shown
as a single server in FIG. 8, the virtual-data-center manage-
ment server (“VDC management server””) may include two or
more physical server computers that support multiple VDC-
management-server virtual appliances. The virtual machine
810 includes a management-interface component 812, dis-
tributed services 814, core services 816, and a host-manage-
ment interface 818. The management interface is accessed
from any of various computers, such as the PC 708 shown in
FIG. 7. The management interface allows the virtual-data-
center administrator to configure a virtual data center, provi-
sion virtual machines, collect statistics and view log files for
the virtual data center, and to carry out other, similar manage-
ment tasks. The host-management interface 818 interfaces to
virtual-data-center agents 824, 825, and 826 that execute as
virtual machines within each of the physical servers of the
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physical data center that is abstracted to a virtual data center
by the VDC management server.

The distributed services 814 include a distributed-resource
scheduler that assigns virtual machines to execute within
particular physical servers and that migrates virtual machines
in order to most effectively make use of computational band-
widths, data-storage capacities, and network capacities of the
physical data center. The distributed services further include
a high-availability service that replicates and migrates virtual
machines in order to ensure that virtual machines continue to
execute despite problems and failures experienced by physi-
cal hardware components. The distributed services also
include a live-virtual-machine migration service that tempo-
rarily halts execution of a virtual machine, encapsulates the
virtual machine in an OVF package, transmits the OVF pack-
age to a different physical server, and restarts the virtual
machine on the different physical server from a virtual-ma-
chine state recorded when execution of the virtual machine
was halted. The distributed services also include a distributed
backup service that provides centralized virtual-machine
backup and restore.

The core services provided by the VDC management
server include host configuration, virtual-machine configura-
tion, virtual-machine provisioning, generation of virtual-
data-center alarms and events, ongoing event logging and
statistics collection, a task scheduler, and a resource-manage-
ment module. Each physical server 820-822 also includes a
host-agent virtual machine 828-830 through which the virtu-
alization layer can be accessed via a virtual-infrastructure
application programming interface (“API”). This interface
allows a remote administrator or user to manage an individual
server through the infrastructure API. The virtual-data-center
agents 824-826 access virtualization-layer server information
through the host agents. The virtual-data-center agents are
primarily responsible for offloading certain of the virtual-
data-center management-server functions specific to a par-
ticular physical server to that physical server. The virtual-
data-center agents relay and enforce resource allocations
made by the VDC management server, relay virtual-machine
provisioning and configuration-change commands to host
agents, monitor and collect performance statistics, alarms,
and events communicated to the virtual-data-center agents by
the local host agents through the interface API, and to carry
out other, similar virtual-data-management tasks.

The virtual-data-center abstraction provides a convenient
and efficient level of abstraction for exposing the computa-
tional resources of a cloud-computing facility to cloud-com-
puting-infrastructure users. A cloud-director management
server exposes virtual resources of a cloud-computing facility
to cloud-computing-infrastructure users. In addition, the
cloud director introduces a multi-tenancy layer of abstraction,
which partitions VDCs into tenant-associated VDCs that can
each be allocated to a particular individual tenant or tenant
organization, both referred to as a “tenant” A given tenant can
be provided one or more tenant-associated VDCs by a cloud
director managing the multi-tenancy layer of abstraction
within a cloud-computing facility. The cloud services inter-
face (308 in FIG. 3) exposes a virtual-data-center manage-
ment interface that abstracts the physical data center.

FIG. 9 illustrates a cloud-director level of abstraction. In
FIG. 9, three different physical data centers 902-904 are
shown below planes representing the cloud-director layer of
abstraction 906-908. Above the planes representing the
cloud-director level of abstraction, multi-tenant virtual data
centers 910-912 are shown. The resources of these multi-
tenant virtual data centers are securely partitioned in order to
provide secure virtual data centers to multiple tenants, or
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cloud-services-accessing organizations. For example, a
cloud-services-provider virtual data center 910 is partitioned
into four different tenant-associated virtual-data centers
within a multi-tenant virtual data center for four different
tenants 916-919. Each multi-tenant virtual data center is man-
aged by a cloud director comprising one or more cloud-
director servers 920-922 and associated cloud-director data-
bases 924-926. Each cloud-director server or servers runs a
cloud-director virtual appliance 930 that includes a cloud-
director management interface 932, a set of cloud-director
services 934, and a virtual-data-center management-server
interface 936. The cloud-director services include an inter-
face and tools for provisioning multi-tenant virtual data cen-
ter virtual data centers on behalf of tenants, tools and inter-
faces for configuring and managing tenant organizations,
tools and services for organization of virtual data centers and
tenant-associated virtual data centers within the multi-tenant
virtual data center, services associated with template and
media catalogs, and provisioning of virtualization networks
from a network pool. Templates are virtual machines that
each contains an OS and/or one or more virtual machines
containing applications. A template may include much of the
detailed contents of virtual machines and virtual appliances
that are encoded within OVF packages, so that the task of
configuring a virtual machine or virtual appliance is signifi-
cantly simplified, requiring only deployment of one OVF
package. These templates are stored in catalogs within a
tenant’s virtual-data center. These catalogs are used for devel-
oping and staging new virtual appliances and published cata-
logs are used for sharing templates in virtual appliances
across organizations. Catalogs may include OS images and
other information relevant to construction, distribution, and
provisioning of virtual appliances.

Considering FIGS. 7 and 9, the VDC-server and cloud-
director layers of abstraction can be seen, as discussed above,
to facilitate employment of the virtual-data-center concept
within private and public clouds. However, this level of
abstraction does not fully facilitate aggregation of single-
tenant and multi-tenant virtual data centers into heteroge-
neous or homogeneous aggregations of cloud-computing
facilities. The present application is directed to providing an
additional layer of abstraction to facilitate aggregation of
cloud-computing facilities.

FIG. 10 illustrates virtual-cloud-connector nodes (“VCC
nodes”) and a VCC server, components of a distributed sys-
tem that provides multi-cloud aggregation and that includes a
cloud-connector server and cloud-connector nodes that coop-
erate to provide services that are distributed across multiple
clouds. In FIG. 10, seven different cloud-computing facilities
are illustrated 1002-1008. Cloud-computing facility 1002 is a
private multi-tenant cloud with a cloud director 1010 that
interfaces to a VDC management server 1012 to provide a
multi-tenant private cloud comprising multiple tenant-asso-
ciated virtual data centers. The remaining cloud-computing
facilities 1003-1008 may be either public or private cloud-
computing facilities and may be single-tenant virtual data
centers, such as virtual data centers 1003 and 1006, multi-
tenant virtual data centers, such as multi-tenant virtual data
centers 1004 and 1007-1008, or any of various different kinds
of third-party cloud-services facilities, such as third-party
cloud-services facility 1005. An additional component, the
VCC server 1014, acting as a controller is included in the
private cloud-computing facility 1002 and interfaces to a
VCC node 1016 that runs as a virtual appliance within the
cloud director 1010. A VCC server may also run as a virtual
appliance within a VDC management server that manages a
single-tenant private cloud. The VCC server 1014 addition-
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ally interfaces, through the Internet, to VCC node virtual
appliances executing within remote VDC management serv-
ers, remote cloud directors, or within the third-party cloud
services 1018-1023. The VCC server provides a VCC server
interface that can be displayed on a local or remote PC, or
other computer system 1026 to allow a cloud-aggregation
administrator or other user to access VCC-server-provided
aggregate-cloud distributed services. In general, the cloud-
computing facilities that together form a multiple-cloud-
computing aggregation through distributed services provided
by the VCC server and VCC nodes are geographically and
operationally distinct.

FIG. 11 illustrates the VCC server and VCC nodes in a
slightly different fashion than the VCC server and VCC nodes
are illustrated in FIG. 10. In FIG. 11, the VCC server virtual
machine 1102 is shown executing within a VCC server 1104,
one or more physical servers located within a private cloud-
computing facility. The VCC-server virtual machine includes
aVCC-server interface 1106 through which aterminal, PC, or
other computing device 1108 interfaces to the VCC server.
The VCC server, upon request, displays a VCC-server user
interface on the computing device 1108 to allow a cloud-
aggregate administrator or other user to access VCC-server-
provided functionality. The VCC-server virtual machine
additionally includes a VCC-node interface 1108 through
which the VCC server interfaces to VCC-node virtual appli-
ances that execute within VDC management servers, cloud
directors, and third-party cloud-computing facilities. As
shown in FIG. 11, in one implementation, a VCC-node virtual
machine is associated with each organization configured
within and supported by a cloud director. Thus, VCC nodes
1112-1114 execute as virtual appliances within cloud director
1116 in association with organizations 1118-1120, respec-
tively. FIG. 11 shows a VCC-node virtual machine 1122
executing within a third-party cloud-computing facility and a
VCC-node virtual machine 1124 executing within a VDC
management server. The VCC server, including the services
provided by the VCC-server virtual machine 1102, in con-
junction with the VCC-node virtual machines running within
remote VDC management servers, cloud directors, and
within third-party cloud-computing facilities, together pro-
vide functionality distributed among the cloud-computing-
facility components of either heterogeneous or homogeneous
cloud-computing aggregates.

FIG. 12 illustrates one implementation of a VCC node. The
VCC node 1200 is a web service that executes within an
Apache/Tomcat container that runs as a virtual appliance
within a cloud director, VDC management server, or third-
party cloud-computing server. The VCC node exposes web
services 1202 to a remote VCC server via REST APIs
accessed through the representational state transfer (“REST”)
protocol 1204 via a hypertext transfer protocol (“HTTP”)
proxy server 1206. The REST protocol uses HI'TP requests to
post data and requests for services, read data and receive
service-generated responses, and delete data. The web ser-
vices 1202 comprise a set of internal functions that are called
to execute the REST APIs 1204. Authorization services are
provided by a spring security layer 1208. The internal func-
tions that implement the web services exposed by the REST
APIs employ a metadata/object-store layer implemented
using an SQL Server database 1210-1212, a storage layer
1214 with adapters 1216-1219 provides access to data stores
1220, file systems 1222, the virtual-data-center management-
server management interface 1224, and the cloud-director
management interface 1226. These adapters may additional
include adapters to 3"%party cloud management services,
interfaces, and systems. The internal functions that imple-
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ment the web services may also access a message protocol
1230 and network transfer services 1232 that allow for trans-
fer of OVF packages and other files securely between VCC
nodes via virtual networks 1234 that virtualize underlying
physical networks 1236. The message protocol 1230 and
network transfer services 1232 together provide for secure
data transfer, multipart messaging, and checkpoint-restart
data transfer that allows failed data transfers to be restarted
from most recent checkpoints, rather than having to be
entirely retransmitted.

FIG. 13 illustrates electronic communications between a
client and server computer. The following discussion of FIG.
13 provides an overview of electronic communications. This
is, however, a very large and complex subject area, a full
discussion of which would likely run for many hundreds or
thousands of pages. The following overview is provided as a
basis for discussing communications stacks, with reference to
subsequent figures. In FIG. 13, a client computer 1302 is
shown to be interconnected with a server computer 1304 via
local communication links 1306 and 1308 and a complex
distributed intermediary communications system 1310, such
as the Internet. This complex communications system may
include a large number of individual computer systems and
many types of electronic communications media, including
wide-area networks, public switched telephone networks,
wireless communications, satellite communications, and
many other types of electronics-communications systems and
intermediate computer systems, routers, bridges, and other
device and system components. Both the server and client
computers are shown to include three basic internal layers
including an applications layer 1312 in the client computer
and a corresponding applications and services layer 1314 in
the server computer, an operating-system layer 1316 and
1318, and a hardware layer 1320 and 1322. The server com-
puter 1304 is additionally associated with an internal, periph-
eral, or remote data-storage subsystem 1324. The hardware
layers 1320 and 1322 may include the components discussed
above with reference to FIG. 1 as well as many additional
hardware components and subsystems, such as power sup-
plies, cooling fans, switches, auxiliary processors, and many
other mechanical, electrical, electromechanical, and electro-
optical-mechanical components. The operating system 1316
and 1318 represents the general control system of both a
client computer 1302 and a server computer 1304. The oper-
ating system interfaces to the hardware layer through a set of
registers that, under processor control, are used for transfer-
ring data, including commands and stored information,
between the operating system and various hardware compo-
nents. The operating system also provides a complex execu-
tion environment in which various application programs,
including database management systems, web browsers, web
services, and other application programs execute. In many
cases, modern computer systems employ an additional layer
between the operating system and the hardware layer,
referred to as a “virtualization layer,” that interacts directly
with the hardware and provides a virtual-hardware-execution
environment for one or more operating systems.

Client systems may include any of many types of proces-
sor-controlled devices, including tablet computers, laptop
computers, mobile smart phones, and other such processor-
controlled devices. These various types of clients may include
only a subset of the components included in a desktop per-
sonal component as well components not generally included
in desktop personal computers.

Electronic communications between computer systems
generally comprises packets of information, referred to as
datagrams, transferred from client computers to server com-
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puters and from server computers to client computers. In
many cases, the communications between computer systems
is commonly viewed from the relatively high level of an
application program which uses an application-layer protocol
for information transfer. However, the application-layer pro-
tocol is implemented on top of additional layers, including a
transport layer, Internet layer, and link layer. These layers are
commonly implemented at different levels within computer
systems. Each layer is associated with a protocol for data
transfer between corresponding layers of computer systems.
These layers of protocols are commonly referred to as a
“protocol stack” In FIG. 13, a representation of a common
protocol stack 1330 is shown below the interconnected server
and client computers 1304 and 1302. The layers are associ-
ated with layer numbers, such as layer number “1” 1332
associated with the application layer 1334. These same layer
numbers are used in the depiction of the interconnection of
the client computer 1302 with the server computer 1304, such
as layer number “1” 1332 associated with a horizontal dashed
line 1336 that represents interconnection of the application
layer 1312 of the client computer with the applications/ser-
vices layer 1314 of the server computer through an applica-
tion-layer protocol. A dashed line 1336 represents intercon-
nection via the application-layer protocol in FIG. 13, because
this interconnection is logical, rather than physical. Dashed-
line 1338 represents the logical interconnection of the oper-
ating-system layers of the client and server computers via a
transport layer. Dashed line 1340 represents the logical inter-
connection of the operating systems of the two computer
systems via an Internet-layer protocol. Finally, links 1306 and
1308 and cloud 1310 together represent the physical commu-
nications media and components that physically transfer data
from the client computer to the server computer and from the
server computer to the client computer. These physical com-
munications components and media transfer data according
to a link-layer protocol. In FIG. 13, a second table 1342 is
aligned with the table 1330 that illustrates the protocol stack
includes example protocols that may be used for each of the
different protocol layers. The hypertext transfer protocol
(“HTTP”) may be used as the application-layer protocol
1344, the transmission control protocol (“TCP”’) 1346 may be
used as the transport-layer protocol, the Internet protocol
1348 (“IP”’) may be used as the Internet-layer protocol, and, in
the case of a computer system interconnected through a local
Ethernet to the Internet, the Ethernet/IEEE 802.3u protocol
1350 may be used for transmitting and receiving information
from the computer system to the complex communications
components of the Internet. Within cloud 1310, which repre-
sents the Internet, many additional types of protocols may be
used for transferring the data between the client computer and
server computer.

Consider the sending of a message, via the HTTP protocol,
from the client computer to the server computer. An applica-
tion program generally makes a system call to the operating
system and includes, in the system call, an indication of the
recipient to whom the data is to be sent as well as a reference
to a buffer that contains the data. The data and other informa-
tion are packaged together into one or more HTTP datagrams,
such as datagram 1352. The datagram may generally include
aheader 1354 as well as the data 1356, encoded as a sequence
of bytes within a block of memory. The header 1354 is gen-
erally a record composed of multiple byte-encoded fields.
The call by the application program to an application-layer
system call is represented in FIG. 13 by solid vertical arrow
1358. The operating system employs a transport-layer proto-
col, such as TCP, to transfer one or more application-layer
datagrams that together represent an application-layer mes-
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sage. In general, when the application-layer message exceeds
some threshold number of bytes, the message is sent as two or
more transport-layer messages. Each of the transport-layer
messages 1360 includes a transport-layer-message header
1362 and an application-layer datagram 1352. The transport-
layer header includes, among other things, sequence numbers
that allow a series of application-layer datagrams to be reas-
sembled into a single application-layer message. The trans-
port-layer protocol is responsible for end-to-end message
transfer independent of the underlying network and other
communications subsystems, and is additionally concerned
with error control, segmentation, as discussed above, flow
control, congestion control, application addressing, and other
aspects of reliable end-to-end message transfer. The trans-
port-layer datagrams are then forwarded to the Internet layer
via system calls within the operating system and are embed-
ded within Internet-layer datagrams 1364, each including an
Internet-layer header 1366 and a transport-layer datagram.
The Internet layer of the protocol stack is concerned with
sending datagrams across the potentially many different com-
munications media and subsystems that together comprise
the Internet. This involves routing of messages through the
complex communications systems to the intended destina-
tion. The Internet layer is concerned with assigning unique
addresses, known as “IP addresses,” to both the sending com-
puter and the destination computer for a message and routing
the message through the Internet to the destination computer.
Internet-layer datagrams are finally transferred, by the oper-
ating system, to communications hardware, such as a NIC,
which embeds the Internet-layer datagram 1364 into a link-
layer datagram 1370 that includes a link-layer header 1372
and generally includes a number of additional bytes 1374
appended to the end of the Internet-layer datagram. The link-
layer header includes collision-control and error-control
information as well as local-network addresses. The link-
layer packet or datagram 1370 is a sequence of bytes that
includes information introduced by each of the layers of the
protocol stack as well as the actual data that is transferred
from the source computer to the destination computer accord-
ing to the application-layer protocol.

FIG. 14 illustrates another model for network communica-
tions used to interconnect consumers of services with service-
providing applications running within server computers. The
Windows Communication Foundation (“WCF”) model for
network communications used to interconnect consumers of
services with service-providing applications running within
server computers. In FIG. 14, a server computer 1402 is
shown to be interconnected with a service-consuming appli-
cation running on a user computer 1404 via communications
stacks of the WCF that exchange data through a physical
communications medium or media 1406. As shown in FIG.
14, the communications are based on the client/server model
in which the service-consuming application transmits
requests to the service application running on the service
computer and the service application transmits responses to
those requests back to the service-consuming application.
The communications stack on the server computer includes
an endpoint 1408, a number of protocol channels 1410, a
transport channel 1412, various lower-level layers imple-
mented in an operating system or both in an operating system
and a virtualization layer 1414, and the hardware NIC periph-
eral device 1416. Similar layers reside within the user com-
puter 1404. As also indicated in FIG. 14, the endpoint, pro-
tocol channels, and transport channel all execute in user
mode, along with the service application 1420 within the
server computer 1402 and, on the user computer, the service-
consuming application 1422, endpoint 1424, protocol chan-
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nels 1426, and transport channel 1428 also execute in user
mode 1430. The OS layers 1414 and 1432 execute either in an
operating system or in a guest operating system and underly-
ing virtualization layer.

An endpoint (1408 and 1424) encapsulates the information
and logic needed by a service application to receive requests
from service consumers and respond to those requests, on the
server side, and encapsulate the information and logic needed
by a client to transmit requests to a remote service application
and receive responses to those requests. Endpoints can be
defined either programmatically or in Extensible Markup
Language (“XML”) configuration files. An endpoint logi-
cally consists of an address represented by an endpoint
address class containing a universal resource identifier
(“URI”) property and an authentication property, a service
contract, and a binding that specifies the identities and orders
of'various protocol channels and the transport channel within
the communications stack underlying the endpoint and over-
lying the various lower, operating-system- or guest-operat-
ing-system layers and the NIC hardware. The contract speci-
fies a set of operations or methods supported by the endpoint.
The data type of each parameter or return value in the methods
associated with an endpoint are associated with a data-con-
tract attribute that specifies how the data type is serialized and
deserialized. Each protocol channel represents one or more
protocols applied to a message or packet to achieve one of
various different types of goals, including security of data
within the message, reliability of message transmission and
delivery, message formatting, and other such goals. The trans-
port channel is concerned with transmission of data streams
or datagrams through remote computers, and may include
error detection and correction, flow control, congestion con-
trol, and other such aspects of data transmission. Well-known
transport protocols include the hypertext transport protocol
(“HTTP”), the transmission control protocol (“TCP”), the
user datagram protocol (“UDP”), and the simple network
management protocol (“SNMP”). In general, lower-level
communications tasks, including Internet-protocol address-
ing and routing, are carried out within the operating-system-
oroperating-system-and-virtualization layers 1414 and 1432.

The Open Systems Interconnection (“OSI””) model is often
used to describe network communications. The OSI model
includes seven different layers, including: (1) a physical
layer, L1, that describes a physical communications compo-
nent, including a communications medium and characteris-
tics of the signal transmitted through the medium; (2) a data-
link layer, L2, that describes datagram exchange over the [.1
layer and physical address; (3) a network layer, L3, that
describes packet and datagram exchange through the [.2
layer, including oath determination and logical addressing;
(4) atransport layer, L4, that describes end-to-end connection
of two communicating entities, reliability, and flow control;
(5) a sessions layer, L5, that describes management of ses-
sions, or multi-packet data transmission contexts; (6) a pre-
sentation layer, L6, that describes data representation, data
encryption, and machine-independent data; and an applica-
tion layer, L7, that describes the interconnection of applica-
tions, including client and server applications.

FIG. 15 illustrates a virtual application. As discussed
above, virtualization can be viewed as a layer 1502 above the
hardware layer 1504 of a computer system that supports
execution of a virtual machine layer 1506, in turn supporting
execution of an operating system 1508 and one or more
application programs 1510 executing in an execution envi-
ronment provided by the operating system, virtual machine,
virtualization layer, and hardware. Another abstraction pro-
vided by a virtualization layer is a virtual application or vApp.
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A vApp 1512 is aresource container that includes one or more
virtual machines that are grouped together to form an appli-
cation. In the example shown in FIG. 15, vApp 1512 includes
three different virtual-machine/OS/application entities 1514-
1516. These three different entities may include, as one
example, a web front end server and two database servers.
The computational entities within a vApp can be easily
deployed and started up and shut down, in similar fashion to
the deployment, starting up, and shutting down of individual
virtual machines. The vApp also provides an additional layer
of abstraction within a virtualized computing environment
that may be associated with a vApp-specific security layer to
allow securing of groups of virtual machines under a common
security scheme.

Just as physical data-storage devices and physical servers
are virtualized by a virtualization layer, the networking
resources within a physical data center are also virtualized by
a virtualization layer to provide various types of virtualized
networking facilities. FIG. 16 illustrates virtualization of net-
working facilities within a physical data center. As shown in
FIG. 16, a physical data center 1602 may include a large
number of enclosures containing multiple servers, such as
enclosure 1604, and network-attached data-storage sub-
systems linked together by several local-area networks 1606
and 1608 interconnected through bridging, switching, fire-
wall, and load-balancing appliances 1610 connected to a VPN
gateway appliance 1612 through which the physical data
center is interconnected with the Internet 1614 and other
wide-area networks. The virtualization layer 1616, as dis-
cussed above, creates multiple virtual data centers 1618 and
1620 that execute within the physical data center, each having
one or more internal organization networks 1622 and 1624
that allow intercommunication between virtual machines and
vApps executing within the data centers and that may also
provide interconnection with remote computational entities
via virtual external networks 1626 and 1628 that interconnect
the internal organization virtual networks 1622 and 1624 with
the Internet and other wide-area networks. In addition, there
may be internal networks, including networks 1630 and 1632,
within individual vApps. Isolated virtual internal vApp net-
works, such as internal virtual network 1632, allow the virtual
machines within a vApp to intercommunicate while other
types of virtual internal networks, including routed virtual
internal networks, such as virtual network 1632, provide con-
nectivity between one or more virtual machines executing
within the vApp to other virtual machines executing within a
given virtual data center as well as remote machines via the
virtual organization network 1632 and virtual external net-
work 1626. The virtual internal routed network 1630 is asso-
ciated with an edge virtual appliance 1634 that runs as a
virtual machine within the virtual data center. The edge appli-
ance provides a firewall, isolation of the subnetwork within
the vApp from the organization of virtual network 1622 and
other networks to which it is connected, and a variety of
networking services, including virtual private network con-
nections to other edge appliances, network address transla-
tion to allow virtual machines within the vApp to intercom-
municate with remote computational entities, and dynamic
host configuration protocol facilities (“DHCP”). Virtual pri-
vate networks employ encryption and other techniques to
create an isolated, virtual network interconnecting two or
more computational entities within one or more communica-
tions networks, including local area networks and wide-area
networks, such as the Internet. One type of VPN is based on
the secure sockets layer and is referred to as the secure socket
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layer virtual private network (“SSL VPN”). Another type of
VPN is referred to as an Internet-protocol-security VPN (“IP-
sec”).

In general, an edge appliance isolates an interior subnet-
work, on one side of the edge appliance, from an exterior
network, such as the Internet. Computational entities, such as
virtual machines, within the interior subnetwork can use local
network addresses that are mapped, by the edge appliance, to
global Internet addresses in order to provide connectivity
between the edge appliance and computational entities within
the interior subnetwork to remote computer systems. An edge
appliance essentially multiplex a small number of global
network addresses among the computational entities within
the subnetwork, in many cases using pools of port numbers
distributed within the internal subnetwork. Just as edge appli-
ance 1634 provides gateway services and isolation to the
computational entities interconnected by a virtual routed inte-
rior network 1630 within a vApp, additional edge appliances
1636 and 1638 may provide similar gateway services to all the
computational entities interconnected by an organization vir-
tual network 1622 and 1624 within virtual data centers 1618
and 1620, respectively.

The Stretch-Deploy Operation

FIGS. 17A-B illustrate one approach to moving a virtual
machine, executing within a first cloud-computing facility, to
a second cloud-computing facility. In FIG. 17A, the virtual
machine or vApp 1702 is represented as a small rectangular
volume within a larger rectangular volume 1704 representing
a first virtual data center. In the example shown in FIG. 17A,
the first virtual data center 1704 represents a private cloud-
computing facility. The small arrows, such as arrow 1706,
emanating from the representation of the virtual machine or
vApp 1702 represent the interconnections between the virtual
machine or vApp and other virtual machines, vApps, and
applications, both remote and local, via virtual and physical
networks. As represented by the large curved arrow 1708, a
cloud-computing-facility user may wish to move a virtual
machine or vApp 1702 to a different, second cloud-comput-
ing facility 1710, such as a multi-tenant, public cloud-com-
puting facility.

FIG.17B illustrates a currently employed method for mov-
ing a virtual machine or vApp from a private cloud to a public
cloud. As shown in FIG. 17B, the virtual machine or vApp
1702 is first powered down 1712, with the powered-down
virtual machine or vApp essentially stored as data 1714
within the virtual data center. The vApp or virtual machine
and is then encapsulated within an OVF 1716 which is
exported from the first cloud-computing facility 1718 to the
second cloud-computing facility, where the OVF is imported
to create a corresponding virtual machine or vApp 1720
within a virtual data center 1722 of the second cloud-com-
puting environment 1710. Finally, the corresponding virtual
machine or vApp is reconfigured and restarted 1724.

Reconfiguration of the corresponding virtual machine or
vApp generally involves association of new global and local
network addresses with the vApp or VM and reconnection of
the vApp or VM with remote computational entities. For
example, translation of domain names associated with ser-
vices executing within the vApp or VM within DNS servers is
reconfigured, addresses associated with virtual network inter-
face controllers within the vApp or VM are configured, and
various types of security layers, Firewall, and NAT rules are
re-established for the vApp or VM. In currently available
virtualization facilities, this type of reconfiguration may
involve significant time and manual interaction of adminis-
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tration users with administration interfaces provided by the
cloud-computing facility. This may, in turn, result in signifi-
cant interruption in the service provided by an application
executing within the vApp or VM to remote clients.

FIGS. 18A-C illustrate the stretch-deploy operation dis-
closed in the current document. FIGS. 18A-C use the same
illustration conventions used in FIGS. 17A-B. In the stretch-
deploy operation, used to move a virtual machine or vApp
1802 from a first cloud-computing facility 1804 to a second
cloud-computing facility 1806, a secure virtual private net-
work tunnel 1808 is first established between the first cloud-
computing facility 1804 and the second cloud-computing
facility 1806. This secure SSL-VPN tunnel 1808 essentially
extends, between two network edge devices, an internal vir-
tual network within the first cloud-computing facility to the
second cloud-computing facility. Next, as shown in FIG. 18B,
the virtual machine or vApp 1802 is moved 1810-1814,
through a first VCC node of the first cloud-computing facility
and a second VCC node of the second cloud-computing facil-
ity, from the first cloud-computing facility to the second VCC
node of the second cloud-computing facility. Finally, as
shown in FIG. 18C, the virtual machine or vApp is deployed,
and execution of the virtual machine or vApp is restarted
within the second cloud-computing facility 1806 but within
the networking context of the extended internal network 1808
via the secure SSL-VPN link between the first cloud-comput-
ing facility and the second cloud-computing facility. The
secure SSL-VPN essentially extends an internal [.2 virtual
local network from the first cloud-computing facility to the
second cloud-computing facility. The broadcast, unicast and
multicast traffic carried by the virtual local network in the first
cloud-computing facility 1804 is seen on the second cloud-
computing facility 1806 via the stretched VPN tunnel. Net-
work traffic from remote computer systems is first received by
the first cloud-computing facility and then transferred,
through the secure VPN, to the second cloud-computing facil-
ity, reaching the migrated virtual machine or vApp through
internal virtual networks within the second cloud-computing
facility. Communications messages transmitted by the moved
or migrated virtual machine or vApp to remote computers
traverse various internal virtual networks within the second
cloud-computing facility and are transferred through the
secure VPN tunnel 1808 back to the first cloud-computing
facility, from which the messages may either be directed to
local computational entities within the first cloud-computing
facility through internal virtual networks of the first cloud-
computing facility or may be transmitted out to the Internet or
other wide-area networks by the first cloud-computing facil-
ity. In essence, the stretch-deploy operation introduces an
additional hop, through the secure VPN tunnel, and a com-
munications overhead associated with that additional hop.
However, the migrated virtual machine or vApp can be
restarted within the second cloud-computing facility without
extensive and lengthy network and operating-system recon-
figuration and therefore resumes execution using the same
network addresses that were used in the first cloud-computing
facility. The internal network configuration of the virtual
machine or vApp remains largely unchanged, and the exter-
nal networking interface to the virtual machine or vApp also
remains unchanged. Although the virtual machine or vApp is
physically executed using execution cycles provided by the
second cloud-computing facility, the virtual machine or vApp
is logically located, with respect to networking connectivity,
in a kind of virtual extension of the internal virtual networks
of'the first cloud-computing facility.
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FIGS. 19A-] illustrate the stretch-deploy operation as
implemented in one type of virtualization layer. FIGS. 19A-]
all use the same illustration conventions, next discussed with
reference to FIG. 19A.

FIG. 19A shows an organization virtual data center 1902 in
a first cloud-computing facility and an organizational virtual
data center 1904 in a second cloud-computing facility. For the
example of FIGS. 19A-J, the same organization controls both
virtual data centers. The stretch-deploy operation can be used
to move a virtual machine or vApp from a private cloud to a
public cloud or from a public cloud to a difterent public cloud,
in this particular implementation, and is provided as a cloud-
connector functionality. The first public cloud is referred to as
the “source cloud,” and the second public cloud 1904 is
referred to as the “target cloud.” Relatively minor adjustments
can be made to the implementation in order to allow move-
ment of VMs and vApps from a variety of different types of
source clouds to a variety of different types of target clouds.
The source cloud 1902 includes virtual data center (“VDC”)
1906 and the target cloud 1904 includes VDC 1908. Each
VDC includes a virtual organization network 1910 and 1912,
respectively. Each virtualization organization network inter-
connects to a virtual external network 1914 and 1916, respec-
tively, through an edge appliance 1918 and 1920, respec-
tively. Each VDC also includes a VCC node, 1915 and 1917,
respectively. The virtual external networks are implemented
within one or more physical networks that provide intercon-
nection of the external networks through the Internet 1922.
VDC 1906 within the source cloud includes a vApp 1924 with
an internal virtual routed vApp network 1926 that intercon-
nects with the virtual organization network 1910 through an
edge appliance 1928 associated with the vApp. The vApp
includes numerous virtual machines 1930-1932, the first of
which 1930 is intended to be moved, using the stretch-deploy
operation, to the target cloud 1904. Both the VDC 1906 in the
source cloud and the VDC 1908 in the target cloud include
catalog facilities 1934 and 1936, respectively, that allows the
organization to publish vApp templates and VM templates for
access by VDCs in remote clouds. These templates can be
used to quickly instantiate virtual machines and vApps on
various different cloud-computing facilities.

An initial set of tasks carried out by the stretch-deploy
operation is directed to ensuring that the source VM or vApp
that is to be moved from the source cloud to the target cloud
and the VDC with the source cloud and VDC within the target
cloud are all capable of participating in a stretch-deploy
operation. Depending on the stretch-deploy implementation,
there may be numerous constraints that need to be satisfied
before the stretch-deploy operation can be undertaken. As one
example, in certain implementations, licensing requirements
for virtualization-layer components must be satisfied, there
must be adequate virtual data-storage capacity in the VDC of
the source cloud and VDC of the target cloud, the VM that is
to be moved may need to be interconnected, through a routed
virtual internal vApp network, to a virtual external network,
the vApp edge appliance 1928 may need to be connected to a
virtual distributed switch, rather than a physical switch, and
the edge appliance may need to support or be configured to
provide certain basic services. Additionally, there may be
constraints with regard to the number of virtual networks to
which the VM or vApp that is to be moved is connected, and
these networks may be associated with type and configuration
constraints. Similar considerations may apply to the VDC
within the target cloud.

Once the configuration, licensing, storage, and other con-
straints associated with the stretch-deploy operation have
been satisfied, the remaining operations carried out during the
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stretch-deploy operation are undertaken. FIGS. 19B-D illus-
trate a first infrastructure phase of the stretch-deploy opera-
tion as implemented in one type of virtualization layer. In a
first step, illustrated in FIG. 19B, an empty routed vApp 1940
with a virtual internal routed network 1941 is created in the
VDC of the target cloud. This vApp is launched in a second
step. In a third step, illustrated in FIG. 19C, the edge appli-
ance 1942 associated with the routed internal virtual network
1941 within vApp 1940 is configured with dynamic network-
address-translation and firewall rules needed for carrying out
the stretch-deploy operation. Similar configuration of the
edge appliance 1928 associated with the virtual VF network
1926 within the vApp 1924 of the VDC in the source cloud
1902 may be carried out in a fourth step. Finally, as illustrated
in FIG. 19D, SSL VPN objects are created in the edge appli-
ance 1942 of the target cloud and the edge appliance 1928 of
the source cloud in order to create an SSL VPN tunnel 1944
between edge appliance 1928 and edge appliance 1942. In
FIG. 19D, this SSL VPN tunnel 1944 is illustrated as a
double-headed arrow directly interconnecting the two edge
appliances. However, the SSL. VPN tunnel is implemented
within the physical networking components of the target
cloud and source cloud, with communications messages
flowing through the same physical pathways within which the
organization networks and organization edge appliances, and
virtual external networks are implemented.

In a next copy phase of the stretch-deploy operation, illus-
trated in FIGS. 19E-G, a representation of the virtual machine
is transterred from the source cloud to the target cloud. As
shown in FIG. 19E, a temporary vApp is first created in the
source cloud 1946. Then, as shown in FIG. 19F, the VM 1930
is moved from the original vApp 1924 within VDC 1906 of
the source cloud 1902 to the temporary vApp 1946, as repre-
sented by curved arrow 1948 in FI1G. 19F. In a third step, the
temporary vApp with the moved VM 1946 is moved to VCC
node 1915 within the source cloud. As shown in FIG. 19G, the
vApp template is transferred to VCC node 1917 OVF file
1950.

Finally, a deploy phase of the stretch-deploy operation is
carried out, as illustrated in FIGS. 19H-]. First, as shown in
FIG.19H, a temporary vApp 1956 is created within the public
cloud using the vApp template 1950 that was transferred to
VCC node 1917 during the copy phase. This temporary vApp
includes the VM 1959 that originally executed as VM 1930 in
the source cloud. In a next step, illustrated in FIG. 191, VM
1959 is moved 1906 from the temporary vApp 1956 to the
empty routed vApp 1940 created during the infrastructure
phase, as discussed above with reference to FIG. 19B. Then,
as illustrated in FIG. 19], the temporary vApp is deleted, the
moved VM 1959 is launched, and any additional configura-
tion of the moved VM 1959 is undertaken. Additional settings
may be changed for the vApp 1924 in the source cloud that
originally contained the moved VM 1959, as well.

Thus, following the stretch-deploy operation, the moved
VM 1959 executes within the target cloud 1904, but all com-
munications to and from this VM are transferred through the
SSL VPN tunnel 1944. Remote access to the moved VM is
therefore directed to the same networking addresses and is
carried through the same virtual organization network 1910 in
the source cloud to reach the same virtual edge appliance
1928 in the source cloud, from which the traffic is transferred
through the SSI, VPN tunnel 1944 to the virtual edge appli-
ance 1942 within the target cloud, to which the network traffic
was directed when the VM 1930 executed in the source cloud.
Similarly, messages transmitted from the moved VM 1959
are routed by virtual edge appliance 1942 through the SSL
VPN tunnel 1944 to the virtual edge appliance 1928 in the
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source cloud from which they are distributed either outward,
to remote computational entities through the virtual organi-
zation network 1910 or distributed inward to other VMs 1931
and 1932 that were originally collocated with the moved VM,
as shown in FIG. 19A.

FIGS. 20A-E provide control-flow diagrams that describe
one implementation of a stretch-deploy operation. FIG. 20A
shows an overview of the stretch-deploy-operation imple-
mentation. In step 2002, the stretch-deploy operation receives
information identifying the organization VDC, source cloud,
vApp, and VM that is intended to be stretch deployed along
with information identifying the target cloud and organiza-
tion VDC within a target cloud to which the VM or vApp is to
be moved. In step 2004, the stretch-deploy operation calls a
routine “verify source” to verify that the licenses, configura-
tion, data-storage capacity, and other characteristics of the
source cloud, VDC within the source cloud, and vApp con-
taining the VM meet any of various constraints associated
with the stretch-deploy operation. When the source has not
been verified, as determined in step 2006, then failure is
reported in step 2008 and the stretch-deploy operation termi-
nates. Otherwise, in step 2008, the stretch-deploy operation
calls a routine “verify target” to verify the various constraints
and parameters associated with the target cloud and VDC
within the target cloud. When the target is not successfully
verified, as determined in step 2010, then failure is reported in
step 2008 and the stretch-deploy operation terminates. In step
2012, the stretch-deploy operation carries out the infrastruc-
ture phase of the stretch-deploy operation, as discussed above
with reference to FIGS. 19A-D. When the infrastructure
phase fails to successfully complete, as determined in step
2014, then failure is reported in step 2008 and the stretch-
deploy routine terminates, reversing any intermediate steps
carried out prior to the failure. In step 2016, the stretch-deploy
operation carries out the copy phase, discussed above with
reference to FIGS. 19E-G. When the copy phase fails to
successfully complete, as determined in step 2018, then the
failure is reported in step 2008 after any already completed
intermediary steps are reversed. In step 2020, the stretch-
deploy operation carries out the deploy phase, discussed
above with reference to FIGS. 19H-J. When the deploy phase
successfully completes, as determined in step 2022, then
success is reported in step 2024 and the stretch-deploy opera-
tion terminates. Otherwise, failure is reported in step 2008
after reversing any already-completed intermediate steps, and
the stretch-deploy operation terminates.

FIG. 20B illustrates the routine “verify source” called in
step 2004 of FIG. 20A. In step 2026, the routine “verify
source” verifies that all of the properly licensed components
needed for stretch deploy are resident within the source cloud,
including verifying the versions of various components, the
network configuration of the vApp, VM, and organization
VDC, the configuration of the edge appliances, and other
such aspects and characteristics of the source cloud. When
deficiencies are identified, as determined in step 2028, then
when the deficiencies can be remedied by installation of
components, update of components, or other such remedial
operations, as determined in step 2030, then the needed com-
ponents are installed, updated, or other remedial operations
are carried out in step 2032. Otherwise, an indication of
failure is returned. In step 2034, the routine “verify source”
verifies that there is sufficient virtual storage capacity within
the VDC of the source cloud for instantiating a temporary
vApp and moving a VM to be stretch deployed into the
temporary vApp. When there is not sufficient storage, as
determined in step 2036, then when additional storage can be
obtained for the VDC, as determined in step 3038, the addi-
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tional storage is obtained in step 2040. Otherwise, failure is
returned. Next, in step 2042, the routine “verify source” veri-
fies all of the network configurations of all of the virtual
internal networks and associated edge appliances to ensure
that the configurations support the stretch-deploy operation.
As one example, in certain implementations, the VM needs to
be interconnected by a routed vApp internal network through
a virtual organization network to a virtual external network.
In addition, the edge appliance associated with the vApp
contained in the VM needs to support certain basic function-
alities, including DHCP. When the network configuration are
not adequate to support the stretch-deploy operation, as deter-
mined in step 2044, but when the network configurations can
be appropriately reconfigured, as determined in step 2046,
then network reconfiguration is carried out in step 2048.
Otherwise failure is returned. Finally, in step 2050, the rou-
tine “verify source” verifies the presence and characteristics
of the VM to be moved and the containing vApp. If the
verification carried out in step 2050 is successful, as deter-
mined in step 2052, then success is returned. Otherwise fail-
ure is returned. In the interest of brevity, a control-flow dia-
gram for the routine “verify target,” called in step 2009 in
FIG. 20A, is not provided, as it would contain much redun-
dant information already contained in FIG. 20B.

FIG. 20C provides a control-flow diagram for the routine
“infrastructure phase,” called in step 2012 of FIG. 20A. In
step 2054, the routine “infrastructure phase” creates a new
empty routed vApp in the target cloud and, in step 2056,
launches the routed vApp. In step 2058, the routine “infra-
structure phase” configures the edge appliance associated
with the organization VDC in the target cloud into which the
VM will be stretch deployed. In step 2060, the edge appliance
in the source cloud associated with the organization VDC in
the source cloud may also be configured. These configuration
steps ensure that dynamic network-address translation and
various firewall functionalities are provisioned within these
edge appliances. Finally, in steps 2062-2063, the routine
“infrastructure phase” creates SSL. VPN objects in the edge
appliances associated with the empty routed vApp in the
target cloud and the routed vApp from which the VM will be
moved, in the source cloud. This establishes the SSL VPN
tunnel between the source cloud and target clouds.

FIG. 20D provides a control-flow diagram of the copy
phase of the stretch-deploy operation, called in step 2016 of
FIG. 20A. In step 2066, a temporary vApp is created in the
source cloud to which, in step 2068, the VM to be stretch
deployed is moved. In step 2070, the routine “copy phase”
generates a vApp template corresponding to the temporary
vApp and stores the vApp template in a catalog. In step 2072,
the routine “copy phase” uses a distributed-catalog feature of
the virtualization layer to copy the vApp template to the target
cloud.

FIG. 20E provides a control-flow diagram for the deploy-
phase routine called in step 2020 in FIG. 20A. In step 2074,
the routine “deploy phase” creates a temporary vApp in the
target cloud using the vApp template generated in step 2070
of FIG. 20D that was distributed from the source cloud to the
target cloud using a distributed-catalog feature. In step 2076,
the routine “deploy phase” moves the VM from this tempo-
rary VApp to the empty routed vApp created in step 2054 in
FIG. 20C. Instep 2078, the routine “deploy phase” deletes the
temporary vApps created in the source and target clouds and
removes the vApp templates from the distributed catalog.
Finally, in step 2080, the routine “deploy phase” carries out
final configuration and parameter-setting operations with
respect to the vApps in the target and source clouds.
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For the sake of brevity, the failure-detection steps carried
out in the infrastructure phase, copy phase, and deploy phase
of the stretch-deploy operation are not shown in FIGS. 20C-
E. When any of the steps in these figures fail, then either the
failure is handled by an additional operation or failure is
returned to the stretch-deploy routine shown in FIG. 20A.

Just as a VM can be moved from a source cloud to a target
cloud, an entire vApp containing multiple VMs can be moved
from a source cloud to a target cloud. A stretch-deployed VM
or vApp can also, subsequently, following the stretch-deploy
operation be returned to the initial cloud by essentially revers-
ing the steps discussed above with reference to FIGS. 19A-
20E.

Although the present invention has been described in terms
of particular embodiments, it is not intended that the inven-
tion be limited to these embodiments. Modifications within
the spirit of the invention will be apparent to those skilled in
the art. For example, the stretch-deploy operation can be
implemented in many different ways by varying any of many
different design, implementation, and deployment param-
eters, including the virtualization layer in which the stretch-
deploy operation is implemented, programming language,
control structures, data structures, modular organization, and
other such design and implementation parameters. In the
above-discussed implementation of a stretch-deploy opera-
tion, much of the logic involved in the stretch-deploy opera-
tion is contained within existing virtualization-layer features,
including a distributed catalog for publishing vApp tem-
plates, creation of SSI. VPN tunnels between edge appli-
ances, and the well-developed virtualization-layer support for
various types of virtualized internal networks. In alternative
implementations, within virtualization layers that lack some
or all of these existing features, similar or alternative func-
tionality can be developed as part of the stretch-deploy opera-
tion. Many of the constraints associated with the stretch-
deploy operation are tied to specific implementations.

It is appreciated that the previous description of the dis-
closed embodiments is provided to enable any person skilled
in the art to make or use the present disclosure. Various
modifications to these embodiments will be readily apparent
to those skilled in the art, and the generic principles defined
herein may be applied to other embodiments without depart-
ing from the spirit or scope of the disclosure. Thus, the present
disclosure is not intended to be limited to the embodiments
shown herein but s to be accorded the widest scope consistent
with the principles and novel features disclosed herein.

The invention claimed is:

1. A cloud-connector subsystem that provides a stretch-
deploy operation for moving one or more virtual machines
and virtual applications, that execute in a source cloud-com-
puting facility, to a target cloud-computing facility where the
one or more virtual machines and virtual applications resume
executing, the cloud-connector subsystem comprising:

a cloud-connector node associated with the source cloud-

computing facility;

a cloud-connector node associated with the target cloud-

computing facility; and

a cloud-connector server that includes one or more proces-

sors, one or more memories, one or more data-storage
devices, and computer instructions that, when executed
on the one or more processors, control the cloud-con-
nector server to provide, in cooperation with the cloud-
connector nodes, a stretch-deploy operation that
extends a first local virtual network, within the source
cloud-computing facility, to a second local virtual
network, within the target cloud-computing facility,
forming an extended local virtual network by
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verifying the source cloud-computing facility and one
or more virtual machines and virtual applications to
be moved,
verifying the target cloud-computing facility,
creating a routed virtual application within the second
local virtual network,
launching execution of the routed virtual application
within the target cloud-computing facility, and
creating, from a first edge appliance through which
the one or more virtual machines are connected to a
first virtual organization network that is, in turn,
connected to an external network, a secure commu-
nications tunnel to a second edge appliance through
which the second local virtual network in the
routed virtual application is connected to a second
virtual organization network, in turn connected to
the external network; and
moves the one or more virtual machines and virtual
applications from executing on the source cloud-com-
puting facility and communicating with other compu-
tational entities through the extended local virtual
network using one or more network addresses to
executing on the target cloud-computing facility and
communicating with other computational entities
through the extended local virtual network using the
same one or more network addresses.

2. The cloud-connector subsystem of claim 1 wherein the
one or more one or more virtual machines and virtual appli-
cations comprises one of:

a single virtual machine;

two or more virtual machines;

a single virtual application including a single virtual

machine; and

a single virtual application including two or more virtual

machines.
3. The cloud-connector subsystem of claim 1,
wherein the first local virtual network is connected through
the first edge appliance to the first organization virtual
network within the source cloud computing facility;

wherein the second local virtual network is connected
through the second edge appliance to the second orga-
nization virtual network within the target cloud comput-
ing facility; and

wherein the stretch-deploy operation extends the first local

virtual network within the source cloud-computing
facility to the target cloud-computing facility by inter-
connecting the first edge appliance and the second edge
appliance with a secure tunnel, joining the first and
second local networks together to form the extended
local virtual network.

4. The cloud-connector subsystem of claim 3 wherein the
secure tunnel is an SSL VPN tunnel.

5. The cloud-connector subsystem of claim 1 wherein the
cloud-connector subsystem verifies a cloud-computing facil-
ity by:

determining that those components of the cloud-comput-

ing facilities used in the stretch-deploy operation are
present, configured, and licensed; and

determining that the cloud-computing facilities have suf-

ficient storage capacity for instantiating a temporary
virtual application.

6. The cloud-connector subsystem of claim 1, wherein the
stretch-deploy operation moves the one or more virtual
machines by executing a copy phase, the copy phase com-
prising:

creating a first temporary virtual application in the source

cloud-computing facility;
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moving the one or more virtual machines to the first tem-

porary virtual application;

generating a virtual application template corresponding to

the temporary virtual application; and

copying the virtual application template to the target cloud-

computing facility.

7. The cloud-connector subsystem of claim 1, wherein the
stretch-deploy operation moves the one or more virtual
machines by executing a deployment phase, the deployment
phase comprising:

creating a second temporary virtual application in the tar-

get cloud-computing facility from the virtual application
template copied to the target cloud-computing facility;
and

moving the one or more virtual machines from the second

temporary virtual application to the routed virtual appli-
cation in the target cloud-computing facility.

8. A method that relocates one or more virtual machines
and virtual applications connected to a first local virtual net-
work within a source cloud-computing facility to a target
cloud-computing facility, the method comprising:

a cloud-connector node associated with the source cloud-

computing facility;

a cloud-connector node associated with the target cloud-

computing facility; and

a cloud-connector server that includes one or more proces-

sors, one or more memories, one or more data-storage
devices, and computer instructions that, when executed
on the one or more processors, control the cloud-con-
nector server to provide, in cooperation with the cloud-
connector nodes, a stretch-deploy operation that
extends the first local virtual network, within the source
cloud-computing facility, to a second local virtual
network, within the target cloud-computing facility,
forming an extended local virtual network by:
verifying the source cloud-computing facility and one
or more virtual machines and virtual applications to
be moved,
verifying the target cloud-computing facility,
creating a routed virtual application within the second
local virtual network,
launching execution of the routed virtual application
within the target cloud-computing facility, and
creating, from a first edge appliance through which
the one or more virtual machines are connected to a
first virtual organization network that is, in turn,
connected to an external network, a secure commu-
nications tunnel to a second edge appliance through
which the second local virtual network in the
routed virtual application is connected to a second
virtual organization network, in turn connected to
the external network; and
moves the one or more virtual machines and virtual
applications from executing on the source cloud-com-
puting facility and communicating with other compu-
tational entities through the extended local virtual
network using one or more network addresses to
executing on the target cloud-computing facility and
communicating with other computational entities
through the extended local virtual network using the
same one or more network addresses.

9. The method of claim 8 wherein the one or more one or
more virtual machines and virtual applications comprises one
of:

a single virtual machine;

two or more virtual machines;

10

15

20

25

30

35

40

45

50

55

60

28

a single virtual application including a single virtual

machine; and

a single virtual application including two or more virtual

machines.
10. The method of claim 8
wherein the first local virtual network is connected through
the first edge appliance to a first organization virtual
network within the source cloud computing facility;

wherein the second local virtual network is connected
through the second edge appliance to the second orga-
nization virtual network within the target cloud comput-
ing facility; and

wherein extending the virtual network to the target cloud-

computing facility further comprises interconnecting
the first edge appliance and the second edge appliance
with a secure tunnel, joining the first and second local
networks together to form the extended local virtual
network.

11. The method of claim 10 wherein the secure tunnel is
one of:

an SSL VPN tunnel; and

an JPsec tunnel.

12. The method of claim 8, wherein veritying a cloud-
computing facility further comprises:

determining that those components of the cloud-comput-

ing facilities used in the stretch-deploy operation are
present, configured, and licensed; and

determining that the cloud-computing has facilities have

sufficient storage capacity for instantiating a temporary
virtual application.

13. The method of claim 8, wherein the stretch-deploy
operation moves the one or more virtual machines by execut-
ing a copy phase, the copy phase comprising:

creating a first temporary virtual application in the source

cloud-computing facility;

moving the one or more virtual machines to the first tem-

porary virtual application;

generating a virtual application template corresponding to

the temporary virtual application; and

copying the virtual application template to the target cloud-

computing facility.

14. The method of claim 8, wherein the stretch-deploy
operation moves the one or more virtual machines by execut-
ing a deployment phase, the deployment phase comprising:

creating a second temporary virtual application in the tar-

get cloud-computing facility from the virtual application
template copied to the target cloud-computing facility;
and

moving the one or more virtual machines from the second

temporary virtual application to the routed virtual appli-
cation in the target cloud-computing facility.

15. Computer instructions stored within a non-transitory
physical data-storage device that, when executed on one or
more processors within a cloud-connector subsystem, control
the cloud-connector subsystem to relocate one or more virtual
machines and virtual applications connected to a first local
virtual network within a source cloud-computing facility to a
target cloud-computing facility by:

a cloud-connector node associated with the source cloud-

computing facility;

a cloud-connector node associated with the target cloud-

computing facility; and

a cloud-connector server that includes one or more proces-

sors, one or more memories, one or more data-storage
devices, and computer instructions that, when executed
on the one or more processors, control the cloud-con-
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nector server to provide, in cooperation with the cloud- moves the one or more virtual machines and virtual
connector nodes, a stretch-deploy operation that applications from executing on the source cloud-com-
extends the first local virtual network, within the source puting facility and communicating with other compu-

cloud-computing facility, to a second local virtual

network, within the target cloud-computing facility,

forming an extended local virtual network by:

verifying the source cloud-computing facility and one
or more virtual machines and virtual applications to
be moved,

verifying the target cloud-computing facility,

creating a routed virtual application within the second
local virtual network,

launching execution of the routed virtual application
within the target cloud-computing facility, and

creating, from a first edge appliance through which
the one or more virtual machines are connected to a
first virtual organization network that is, in turn,
connected to an external network, a secure commu-
nications tunnel to a second edge appliance through
which the second local virtual network in the
routed virtual application is connected to a second
virtual organization network, in turn connected to
the external network; and
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tational entities through the extended local virtual
network using one or more network addresses to
executing on the target cloud-computing facility and
communicating with other computational entities
through the extended local virtual network using the
same one or more network addresses.
16. The computer instructions of claim 15
wherein the first local virtual network is connected through
the first edge appliance to the first organization virtual
network within the source cloud computing facility;
wherein the second local virtual network is connected
through the second edge appliance to the second orga-
nization virtual network within the target cloud comput-
ing facility; and
wherein extending the virtual network to the target cloud-
computing facility further comprises interconnecting
the first edge appliance and the second edge appliance
with a secure tunnel, joining the first and second local
networks together to form the extended local virtual
network.



